题目内容
【题目】如图,有一块铁皮,拱形边缘呈抛物线状,MN=4,抛物线顶点处到边MN的距离是4,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上.
(1)如图建立适当的坐标系,求抛物线解析式;
(2)设矩形ABCD的周长为L,点C的坐标为(m,0),求L与m的关系式(不要求写自变量取值范围).
(3)问这样截下去的矩形铁皮的周长能否等于9.5,若不等于9.5,请说明理由,若等于9.5,求出吗的值?
【答案】(1)y=﹣x2+4x;(2)L=﹣2m2+4m+8;(3)能等于9.5,此时m1=,m2=.
【解析】试题分析: (1)根据MN=4,抛物线顶点到MN的距离是4dm,得到N(4,0),P(2,4),即可求得函数的解析式;
(2)把BC,DC用m表示出来,代入L=2(BC+DC)即可;
(3)把L=9.5代入L=﹣2m2+4m+8,解方程即可.
试题解析:
解:(1)∵MN=4dm,抛物线顶点到MN的距离是4dm,
∴N(4,0),顶点P(2,4),
设抛物线的解析式为:y=a(x﹣2)2+4,
把N(4,0)代入得:0=a(4﹣2)2+4,
解得:a=﹣1,
∴抛物线的解析式为:y=﹣(x﹣2)2+4,
即:抛物线的解析式为:y=﹣x2+4x;
(2)点C的坐标为(m,0),
∴BC=4﹣2m,DC═﹣m2+4m,
∴L=2(BC+DC)=﹣2m2+4m+8;
(3)能等于9.5,
当L=﹣2m2+4m+8=9.5,
即2m2﹣4m+1.5=0,
解得:m1=,m2=.
点睛: 本题主要考查了用待定系数法求二次函数解析式,二次函数的实际应用,二次函数于一元二次方程的关系,解题的关键是将实际问题转化成数学问题.
【题目】已知函数,画出图象并根据函数图象回答下列问题:
(1)列表、描点、连线
x | |||||
(2)的两个解是多少?
(3)x取何值时,y>0?
(4)x取何值时,抛物线在x轴上或下方?
(5)抛物线与直线y=k有唯一的交点,则k= .