题目内容
【题目】在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.
(1)求证:四边形BFDE是平行四边形;
(2)若EF⊥AB,垂足为M,tan∠MBO= ,求EM:MF的值.
【答案】
(1)证明:在菱形ABCD中,AD∥BC,OA=OC,OB=OD,
∴∠AEO=∠CFO,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(AAS),
∴OE=OF,
又∵OB=OD,
∴四边形BFDE是平行四边形
(2)解:设OM=2x,
∵EF⊥AB,tan∠MBO= ,
∴BM=3x,
又∵AC⊥BD,
∴∠AOM=∠OBM,
∴△AOM∽△OBM,
∴ = ,
∴AM= = x,
∵AD∥BC,
∴△AEM∽△BFM,
∴EM:FM=AM:BM= x:3x=4:9.
【解析】(1)根据两直线平行,内错角相等可得∠AEO=∠CFO,然后利用“角角边”证明△AEO和△CFO全等,根据全等三角形对应边相等可得OE=OF,再根据对角线互相平分的四边形是平行四边形证明即可;(2)设OM=x,根据∠MBO的正切值表示出BM,再根据△AOM和△OBM相似,利用相似三角形对应边成比例求出AM,然后根据△AEM和△BFM相似,利用相似三角形对应边成比例求解即可.
练习册系列答案
相关题目