题目内容
【题目】小亮在学习中遇到这样一个问题:
如图,点是弧上一动点,线段点是线段的中点,过点作,交的延长线于点.当为等腰三角形时,求线段的长度.
小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:
根据点在弧上的不同位置,画出相应的图形,测量线段的长度,得到下表的几组对应值.
操作中发现:
①"当点为弧的中点时, ".则上中的值是
②"线段的长度无需测量即可得到".请简要说明理由;
将线段的长度作为自变量和的长度都是的函数,分别记为和,并在平面直角坐标系中画出了函数的图象,如图所示.请在同一坐标系中画出函数的图象;
继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当为等腰三角形时,线段长度的近似值.(结果保留一位小数).
【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm或5.0cm或6.3cm;
【解析】
(1)①点为弧的中点时,△ABD≌△ACD,即可得到CD=BD;②由题意得△ACF≌△ABD,即可得到CF=BD;
(2)根据表格数据运用描点法即可画出函数图象;
(3)画出的图象,当为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD的近似值.
解:(1)①点为弧的中点时,由圆的性质可得:
,
∴△ABD≌△ACD,
∴CD=BD=5.0,
∴;
②∵,
∴,
∵,
∴△ACF≌△ABD,
∴CF=BD,
∴线段的长度无需测量即可得到;
(2)函数的图象如图所示:
(3)由(1)知,
画出的图象,如上图所示,当为等腰三角形时,
①,BD为与函数图象的交点横坐标,即BD=5.0cm;
②,BD为与函数图象的交点横坐标,即BD=6.3cm;
③,BD为与函数图象的交点横坐标,即BD=3.5cm;
综上:当为等腰三角形时,线段长度的近似值为3.5cm或5.0cm或6.3cm.
【题目】通过课本上对函数的学习,我们积累了一定的经验,下表是一个函数的自变量与函数值的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:
… | 0 | 1 | 2 | 3 | 4 | 5 | … | |
… | 6 | 3 | 2 | 1.5 | 1.2 | 1 | … |
(1)当 时,;
(2)根据表中数值描点,并画出函数图象;
(3)观察画出的图象,写出这个函数的一条性质: .