题目内容

【题目】如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为

【答案】6
【解析】解:∵y=﹣x2+x+2, ∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,
解得 x=2或x=﹣1
故设P(x,y)(2>x>0,y>0),
∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.
∴当x=1时,C最大值=6,.
即:四边形OAPB周长的最大值为6.
故答案是:6.
【考点精析】通过灵活运用二次函数的最值,掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网