题目内容

在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连接EF,求
EF
AC
的值.
(1)证明:∵DE⊥DB,⊙O是Rt△BDE的外接圆
∴BE是⊙O的直径,点O是BE的中点,连接OD(1分)
∵∠C=90°
∴∠DBC+∠BDC=90°
又∵BD为∠ABC的平分线
∴∠ABD=∠DBC
∵OB=OD
∴∠ABD=∠ODB
∴∠ODB+∠BDC=90°
∴∠ODC=90°(4分)
又∵OD是⊙O的半径
∴AC是⊙O的切线(5分)

(2)设⊙O的半径为r,
在Rt△ABC中,AB2=BC2+CA2=92+122=225
∴AB=15(7分)
∵∠A=∠A,∠ADO=∠C=90°
∴△ADO△ACB.
AO
AB
=
OD
BC

15-r
15
=
r
9

r=
45
8

∴BE=2r=
45
4
,(10分)
又∵BE是⊙O的直径
∴∠BFE=90°
∴△BEF△BAC
EF
AC
=
BE
BA
=
45
4
15
=
3
4
(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网