题目内容
【题目】如图,在Rt△ABC中,∠B=90°,AC=10,∠C=30°,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(t>0)秒,过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:四边形AEFD是平行四边形;
(2)当t为何值时,△DEF是等边三角形?说明理由;
(3)当t为何值时,△DEF为直角三角形?(请直接写出t的值)
【答案】(1)见解析;(2)当t为时,△DEF是等边三角形;见解析;(3)当t为或4时,△DEF为直角三角形.
【解析】
(1)在Rt△CDF中,利用30度角的对边等于斜边的一半,即可得出DF的长,此题得解;
(2)易知当△DEF是等边三角形时,△EDA是等边三角形,由∠A=60°可得出AD=AE,进而可得出关于t的一元一次方程,解之即可得出结论;
(3)易知当△DEF为直角三角形时,△EDA是直角三角形,分∠AED=90°和∠ADE=90°两种情况考虑,利用30度角的对边等于斜边的一半,可得出关于t的一元一次方程,解之即可得出结论.
解:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t.
又∵AE=t,
∴AE=DF,
∵AE∥DF,
∴四边形AEFD是平行四边形.
(2)∵四边形AEFD是平行四边形,
∴当△DEF是等边三角形时,△EDA是等边三角形.
∵∠A=90°-∠C=60°,
∴AD=AE.
∵AE=t,AD=AC-CD=10-2t,
∴t=10-2t,
∴t=,
∴当t为时,△DEF是等边三角形.
(3)∵四边形AEFD是平行四边形,
∴当△DEF为直角三角形时,△EDA是直角三角形.
当∠AED=90°时,AD=2AE,即10-2t=2t,
解得:t=;
当∠ADE=90°时,AE=2AD,即t=2(10-2t),
解得:t=4.
综上所述:当t为或4时,△DEF为直角三角形.