题目内容

【题目】如图,在△ABC中,AB=5,AC=4,BC=3,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是

【答案】4.5
【解析】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1 , 此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1
∵AB=5,AC=4,BC=3,
∴AB2=AC2+BC2
∴∠C=90°,
∵∠OP1B=90°,
∴OP1∥AC
∵AO=OB,
∴P1C=P1B,
∴OP1= AC=2,
∴P1Q1最小值为OP1﹣OQ1=0.5,
如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
P2Q2最大值=2.5+1.5=4,
∴PQ长的最大值与最小值的和是4.5.
所以答案是:4.5.

【考点精析】根据题目的已知条件,利用切线的性质定理的相关知识可以得到问题的答案,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网