题目内容

【题目】如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.

(1)求二次函数的解析式;

(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;

(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.

【答案】(1)y=x2x﹣1;(2)点D坐标为(﹣1,0);(3)x的取值范围是﹣1<x<4.

【解析】

试题分析:(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;

(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;

(3)画出图象,再根据图象直接得出答案.

解:(1)二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,

a=,b=﹣,c=﹣1,

二次函数的解析式为y=x2x﹣1;

(2)当y=0时,得x2x﹣1=0;

解得x1=2,x2=﹣1,

点D坐标为(﹣1,0);

(3)图象如图,

当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网