题目内容

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:

(1)线段BE的长;

(2)∠ECB的余切值

【答案】(1);(2)

【解析】

试题分析:(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB,求出∠ADE=∠A=45°,由三角函数得出AE,即可得出BE的长;

(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BEcos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.

试题解析:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=ADcos45°==,∴BE=AB﹣AE==,即线段BE的长为

(2)过点E作EH⊥BC,垂足为点H,如图所示:

∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BEcos45°==2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网