题目内容
【题目】计算:﹣16+(﹣29)
【答案】-45.
【解析】
根据有理数的加法法则计算可得.
解:原式=﹣(16+29)=﹣45.
【题目】在一组数据﹣1,1,2,2,3,﹣1,4中,众数是 .
【题目】如图,随着我市铁路建设进程的加快,现规划从A地到B地有一条笔直的铁路通过,但在附近的C处有一大型油库,现测得油库C在A地的北偏东60°方向上,在B地的西北方向上,AB的距离为米.已知在以油库C为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C是否会受到影响?请说明理由.
【题目】下列因式分解正确的是( )
A.x4﹣2x2+4=(x2﹣2)2B.3x2﹣9y+3=3(x2﹣3)
C.x2n﹣xn=xn(x+1)(x﹣1)D.4x2+8ax+4a2=4(x+a)2
【题目】抛物线y=2x2向右平移1个单位,再向上平移5个单位,则平移后的抛物线的解析式为( )A.y=2(x+1)2+5B.y=2(x+1)2-5C.y=2(x-1)2-5D.y=2(x-1)2+5
【题目】计算:﹣18+(+9)﹣(﹣6)+(﹣3)
【题目】尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.
求证:.
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证.
(1)请你根据以上解题思路帮尤秀同学写出证明过程.
(2)利用题中的结论,解答下列问题:
在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求的值.
【题目】如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:
(1)线段BE的长;
(2)∠ECB的余切值.