题目内容

【题目】如图,在四边形ABCD,∠B=90°,AB∥ED ,BCE,交 ACF, DE = BC,.

(1) 求证:△FCD 是等腰三角形

(2) AB=3.5cm,CD的长

【答案】(1)详见解析;(2)CD=7cm.

【解析】

(1)首先根据平行线的性质得出∠DEC=∠B=90°,然后在△DCE中根据三角形内角和定理得出∠DCE的度数从而得出∠DCF的度数.在△CDF中根据等角对等边证明出△FCD是等腰三角形

(2)先证明ACB≌△CDE得出ACCD再根据含30°角的直角三角形的性质求解即可

1)∵DEAB,∠B=90°,∴∠DEC=90°,∴∠DCE=90°﹣∠CDE=60°,∴∠DCF=∠DCE﹣∠ACB=30°,∴∠CDE=∠DCF,∴DFCF,∴△FCD是等腰三角形

(2)在△ACB和△CDE中,∵,∴△ACB≌△CDE,∴ACCD

Rt△ABC ,∠B=90°,∠ACB=30°,AB=3.5,∴AC=2AB=7,∴CD=7.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网