题目内容
【题目】如图,在□ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF.
(1)求证:△AEH≌△CGF;
(2)若EG平分∠HEF,求证:四边形EFGH是菱形.
【答案】(1)答案见解析;(2)答案见解析.
【解析】试题分析:(1)根据全等三角形的判定定理SAS证得结论;
(2)欲证明四边形EFGH是菱形,只需推知四边形EFGH是平行四边形,然后证得该平行四边形的邻边相等即可.
试题解析:证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,在△AEH与△CGF中,∵,∴△AEH≌△CGF(SAS);
(2)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D.
∵AE=CG,AH=CF,∴EB=DG,HD=BF,∴△BEF≌△DGH,∴EF=HG.
又∵△AEH≌△CGF,∴EH=GF,∴四边形HEFG为平行四边形,∴EH∥FG,∴∠HEG=∠FGE.∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠FGE=∠FEG,∴EF=GF,∴四边形EFGH是菱形.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目