题目内容
【题目】已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线∥PQ,点D在点C的左边且CD=3.
(1) 直接写出△BCD的面积.
(2) 如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,则∠CEF与∠CFE有何数量关系?请说明理由.
(3) 如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,直接写出其值;若变化,直接写出变化范围.
【答案】(1)、3;(2)、∠CEF=∠CFE;(3)、
【解析】
试题分析:(1)、根据三角形的面积计算公式求出三角形的面积;(2)、根据垂直得出∠BCO=∠BAC,根据角平分线得出∠ABF=∠CBF,则∠ABF+∠BAC=∠CBF+∠BCO,根据△ABF和△BCE的内角和定理得出∠AFB=∠CEB,从而得出答案;(3)、根据题意求出的大小.
试题解析:(1)、S△BCD=3
(2)、∠CEF=∠CFE
理由:∵AC⊥BC,MN⊥AB ∴∠BAC+∠ABC=90°,∠BCO+∠ABC=90°, ∴∠BCO+∠ABC=∠BAC+∠ABC,
∴∠BCO =∠BAC, ∵BF平分∠CBA ∴∠ABF=∠CBF ∴∠ABF+∠BAC =∠CBF+∠BCO
在△ABF与△BCE中 ∠ABF+∠BAC +∠AFB =∠CBF+∠BCA+∠CEB=1800
∴∠AFB=∠CEB ∴∠CEF=∠CFE
(3)、=
练习册系列答案
相关题目