题目内容
【题目】如图,在等腰直角△ABC中,∠ACB=90°,O是AB边上的中点,点D、E分别在AC、BC边上,且∠DOE=90°,DE交OC于P,下列结论:
①图中的全等三角形共有3对;
②AD=CE;
③∠CDO=∠BEO;
④OC=DC+CE;
⑤△ABC的面积是四边形DOEC面积的2倍.
正确的是 .(填序号)
【答案】①②③⑤
【解析】
试题分析:根据等腰三角形的性质,直角三角形斜边上的中线性质,三角形内角和定理,等腰三角形的性质得出∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,求出∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,∠AOD=∠COE,∠COD=∠BOE,根据ASA推出△COE≌△AOD,△COD≌△BOE,根据全等三角形的性质得出S△COE=S△AOD,AD=CE,∠CDO=∠BEO,再逐个判断即可.
解:∵在等腰直角△ABC中,∠ACB=90°,O是AB边上的中点,
∴∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,
∴∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,
∵∠DOE=90°,
∴∠AOD=∠COE=90°﹣∠COD,∠COD=∠BOE=90°﹣∠COE,
在△COE和△AOD中
∴△COE≌△AOD(ASA),
同理△COD≌△BOE,
∴S△COE=S△AOD,AD=CE,∠CDO=∠BEO,△ABC的面积是四边形DOEC面积的2倍,
在△AOC和△BOC中
∴△AOC≌△BOC,
∵AD=CE,
∴CD+CE=AC,
∵∠COA=90°,
∴CO<AC,
∴OC=DC+CE错误;
即①②③⑤正确,④错误;
故答案为:①②③⑤.
练习册系列答案
相关题目