题目内容
【题目】如图,抛物线y=﹣x2+bx+c与x轴正半轴交于A点,与y轴正半轴交于B,直线AB的解析式为y=﹣x+3.
(1)求抛物线解析式;
(2)P为线段OA上一点(不与O、A重合),过P作PQ⊥x轴交抛物线于Q,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;
(3)在(2)的条件下,连接QN并延长交y轴于E,连接AE,求t为何值时,MN∥AE.
【答案】(1)y=﹣x2+2x+3;(2)Nx=3﹣=(0<t<3);(3)2.
【解析】
(1)求出A、B两点坐标,利用待定系数法即可解决问题;
(2)如图1中,过点M作MG⊥x轴于G,NH⊥GM,于H.首先证明N、P、A三点在以M为圆心MA为半径的⊙M上,再根据△NMH≌△MPG,得到NH=MG,HM=PG,即可解决问题;
(3)如图2中,MN∥AE,QM=MA,得EN=QN,利用中点坐标公式,列出方程即可解决问题.
解:(1)∵直线AB的解析式为y=﹣x+3,
∴A(3,0),B(0,3),
∵抛物线y=﹣x2+bx+c经过A点,B点,
∴,解得,
∴抛物线解析式为y=﹣x2+2x+3;
(2)如图1中,过点M作MG⊥x轴于G,NH⊥GM,于H,
∵OA=OB,∠AOB=90°,
∴∠PAN=45°,
∵∠NMP=90°,
∴∠PAN=∠NMP,
∴N、P、A三点在以M为圆心MA为半径的⊙M上,
∴MN=MP,
∵∠NHM=∠PGM=∠NMP=90°,
∴∠NMH+∠PMG=90°,∠PMG+∠MPG=90°,
∴∠NMH=∠MPG,
∴△NMH≌△MPG,
∴NH=MG,HM=PG,
∵P(t,0),
∴Q(t,﹣t2+2t+3),M(,),
∴PG=MH=﹣t=,HG=+=,
∴Ny=,
∵点N在直线AB上,
∴Ny=﹣Nx+3,
∴Nx=3﹣=(0<t<3);
(3)如图2中,
∵MN∥AE,QM=MA,
∴EN=QN,
∴=,
∴t2﹣2t=0,
解得t=2或0(舍弃),
∴t=2时,MN∥AE.