题目内容
【题目】对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时, (a,b)=(c,d).定义运算“”:(a,b)(c,d)=(ac-bd,ad+bc).若(1,2)(p,3)=(q,q),则pq=___________.
【答案】135
【解析】
首先根据运算“⊕”:(a,b)⊕(c,d)=(ac-bd,ad+bc),可知(1,2)⊕(p,3)=(p-6,3+2p),再由规定:当且仅当a=c且b=d时,(a,b)=(c,d),得出p-6=q,3+2p=q,解出p,q的值,即可得出结果.
根据题意可知(1,2)(p,3)=(p-6,3+2p)=(q,q),
∴p-6=q,3+2p=q,
解得p=-9,q=-15,
Pq=(-9)×(-15)=135.
故答案为:135.
练习册系列答案
相关题目
【题目】某学校计划组织全校1500名师生外出参加集体活动.经过研究,决定租用当地租车公司一共60辆、两种型号客车作为交通工具.
下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
型号 | 载客量 | 租金单价 |
30人辆 | 400元辆 | |
20人辆 | 300元辆 |
注:载客量指的是每辆客车最多可载该校师生的人数.
学校租用型号客车辆,租车总费用为元.
(1)求与的函数解析式,请直接写出的取值范围;
(2)若要使租车总费用不超过22000元,一共有几种租车方案?并结合函数性质说明哪种租车方案最省钱?