题目内容

【题目】如图,在ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.

(1)求证:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°.求∠B的度数.

【答案】
(1)

证明:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠D=∠ECF,

在△ADE和△FCE中,

∴△ADE≌△FCE(ASA)


(2)

解:∵△ADE≌△FCE,

∴AD=FC,

∵AD=BC,AB=2BC,

∴AB=FB,

∴∠BAF=∠F=36°,

∴∠B=180°﹣2×36°=108°


【解析】(1)利用平行四边形的性质得出AD∥BC,AD=BC,证出∠D=∠ECF,由ASA即可证出△ADE≌△FCE;(2)证出AB=FB,由等腰三角形的性质和三角形内角和定理即可得出答案.
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网