题目内容
【题目】若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是( )
A.﹣14B.﹣17C.﹣20D.﹣23
【答案】A
【解析】
根据不等式组求出a的范围,然后再根据分式方程求出a的范围,从而确定a满足条件的所有整数值,求和即可.
不等式组整理得: ,
由不等式组至少有4个整数解,得到a+2<﹣1,
解得:a<﹣3,
分式方程去分母得:12﹣ax=2x+4,
解得:x=,
∵分式方程有整数解且a是整数
∴a+2=±1、±2、±4、±8,
即a=﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10,
又∵x=≠﹣2,
∴a≠﹣6,
由a<﹣3得:a=﹣10或﹣4,
∴所有满足条件的a的和是﹣14,
故选:A.
【题目】在一个不透明的布袋中,有三个除颜色外其它均相同的小球,其中两个黑色,一个红色.
(1)请用表格或树状图求出:一次随机取出2个小球,颜色不同的概率.
(2)如果老师在布袋中加入若干个红色小球.然后小明通过做实验的方式猜测加入的小球数,小 明每次換出一个小球记录下慎色并放回,实验数据如下表:
实验次数 | 100 | 200 | 300 | 400 | 500 | 1000 |
摸出红球 | 78 | 147 | 228 | 304 | 373 | 752 |
请你帮小明算出老师放入了多少个红色小球.
【题目】学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:
得分 | 10 | 9 | 8 | 7 | 6 |
人数 | 3 | 3 | 2 | 1 | 1 |
(1)计算这10名同学这次测试的平均得分;
(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;
(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?