题目内容

【题目】如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.
(1)求证:CD是⊙O的切线;
(2)若AB=4,求图中阴影部分的面积.

【答案】(1)证明:连接OD,
∵∠BCA=90°,∠B=30°,
∴∠OAD=∠BAC=60°,
∵OD=OA,
∴△OAD是等边三角形,
∴AD=OA=AC,∠ODA=∠O=60°,
∴∠ADC=∠ACD=∠OAD=30°,
∴∠ODC=60°+30°=90°,
即OD⊥DC,
∵OD为半径,
∴CD是⊙O的切线;
(2)解:∵AB=4,∠ACB=90°,∠B=30°,
∴OD=OA=AC=AB=2,
由勾股定理得:CD===2
∴S阴影=SODC﹣S扇形AOD=×2×2=2π.

【解析】(1)连接OD,求出∠OAD=60°,得出等边三角形OAD,求出AD=OA=AC,∠ODA=∠O=60°,求出∠ADC=∠ACD=∠OAD=30°,求出∠ODC=90°,根据切线的判定得出即可;
(2)求出OD,根据勾股定理求出CD长,分别求出三角形ODC和扇形AOD的面积,相减即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网