题目内容
【题目】如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.
(1)求证:四边形BCED是平行四边形;
(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.
【答案】(1)证明见解析;(2)2.
【解析】试题分析:(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;
(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.
(1)证明:∵∠A=∠F,
∴DE∥BC,
∵∠1=∠2,且∠1=∠DMF,
∴∠DMF=∠2,
∴DB∥EC,
则四边形BCED为平行四边形;
(2)解:∵BN平分∠DBC,
∴∠DBN=∠CBN,
∵EC∥DB,
∴∠CNB=∠DBN,
∴∠CNB=∠CBN,
∴CN=BC=DE=2.
练习册系列答案
相关题目