题目内容
【题目】如图所示,直线AB与x轴交于点A,与y轴交于点C(0,2),且与反比例函数y=﹣ 的图象在第二象限内交于点B,过点B作BD⊥x轴于点D,OD=2.
(1)求直线AB的解析式;
(2)若点P是线段BD上一点,且△PBC的面积等于3,求点P的坐标.
【答案】
(1)解:OD=2,B点的横坐标是﹣2,
当x=﹣2时,y=﹣ =4,
∴B点坐标是(﹣2,4),
设直线AB的解析式是y=kx+b,图象过(﹣2,4)、(0,2),
,
解得 ,
∴直线AB的解析式为y=﹣x+2
(2)解:∵OD=2, =3,
∴BP=3,
PD=BD﹣BP=4﹣3=1,
∴P点坐标是(﹣2,1)
【解析】(1)根据图象上的点满足函数解析式,可得B点坐标,根据待定系数法,可得函数解析式;(2)三角形的面积公式,BP的长,可得P点坐标.
练习册系列答案
相关题目
【题目】小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:
方案代号 | 月租费(元) | 免费时间(分) | 超过免费时间的通话费(元/分) |
一 | 10 | 0 | 0.20 |
二 | 30 | 80 | 0.15 |
(1)分别写出方案一、二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;
(2)画出(1)中两个函数的图象;
(3)若小明月通话时间为200分钟左右,他应该选择哪种资费方案最省钱.