题目内容

【题目】在矩形ABCD中,AB12P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点BBECG,垂足为E且在AD上,BEPC于点F

1)如图1,若点EAD的中点,求证:△AEB≌△DEC

2)如图2,当AD25,且AEDE时,求的值;

3)如图3,当BEEF108时,求BP的值.

【答案】(1)证明见解析;(2);(39

【解析】

1)先判断出∠A=∠D=90°,AB=DC,再判断出AE=DE,即可得出结论;

(2)利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB,得出BP=BF,证明,得出比例式建立方程求解即可得出,再判断出,进而求出PB,即可得出结论;

(3)判断出,得出,即可得出结论.

解:(1)在矩形ABCD中,∠A=∠D90°ABDC

EAD中点,

AEDE

在△AEB和△DEC中,

∴△AEB≌△DECSAS);

2)在矩形ABCD,∠ABC90°

∵△BPC沿PC折叠得到△GPC

∴∠PGC=∠PBC90°,∠BPC=∠GPC

BECG

BEPG

∴∠GPF=∠PFB

∴∠BPF=∠BFP

BPBF

∵∠BEC90°

∴∠AEB+CED90°

∵∠AEB+ABE90°

∴∠CED=∠ABE

∵∠A=∠D90°

∴△ABE∽△DEC

AEx

DE25x

x9x16

AEDE

AE9DE16

CE20BE15

由折叠得,BPPG

BPBFPG

BEPG

∴△ECF∽△GCP

BPBFPGy

y

BP

EFBEBF15

3)如图,连接FG

∵∠GEF=∠PGC90°

∴∠GEF+PGC180°

BFPG

BFPG

BPGF是菱形,

BPGF

∴∠GFE=∠ABE

∴△GEF∽△EAB

BEEFABGF

BEEF108AB12

GF9

BPGF9

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网