题目内容
已知,如图,AB是⊙O的直径,直线EF切⊙O于点B,C和D是⊙O上的点,且∠CBE=40°,AD=CD,则∠BCD的度数是( )
A.110° | B.115° | C.120° | D.130° |
如图,连接AC,
∵直线EF切⊙O于点B,
∴∠CAB=∠CBE=40°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CBA=50°;
∵AD=CD,
∴∠DAC=∠DCA,
∴∠D=180°-∠CBA=130°,
∴∠DCA=
=25°,
∴∠BCD=90°+25°=115°.
故选B.
∵直线EF切⊙O于点B,
∴∠CAB=∠CBE=40°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CBA=50°;
∵AD=CD,
∴∠DAC=∠DCA,
∴∠D=180°-∠CBA=130°,
∴∠DCA=
180°-130° |
2 |
∴∠BCD=90°+25°=115°.
故选B.
练习册系列答案
相关题目