题目内容
【题目】在△ABC 中,∠BAC=90°,AD 是 BC 边上的中线,点 E 为 AD 的中点,过点 A 作 AF∥BC交 BE 的延长线于点 F,连接 CF.
(1)求证:AD=AF;
(2)填空:①当∠ACB= °时,四边形 ADCF 为正方形;
②连接 DF,当∠ACB= °时,四边形 ABDF 为菱形.
【答案】(1)见解析;(2)①45;②30
【解析】
(1)根据直角三角形的性质得到AD=CD=BD,根据全等三角形的判定和性质即可得到结论;
(2)①根据菱形的判定定理得到四边形ADCF是菱形,求得∠DCF=90°,于是得到结论;
②根据平行四边形的性质得到CD=CF,推出△DCF是等边三角形,得到DF=BD,于是得到结论.
(1)∵∠BAC=90°,AD是BC边上的中线,
∵AD=CD=BD,
∵点E为AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
∵∠AEF=∠DEB,
∴△AEF≌△DEB(AAS),
∴AF=BD,
∴AD=AF;
(2)①当∠ACB=45°时,四边形ADCF为正方形;
∵AD=AF,
∴AF=CD,
∵AF∥CD,
∴四边形ADCF是菱形,
要使四边形ADCF是正方形,
则∠DCF=90°,
∴∠ACD=∠ACF=45°;
②当∠ACB=30°时,四边形ABDF为菱形;
由(1)得AF=BD,AF∥BC,
∴四边形ABDF是平行四边形,
要使四边形ABDF为菱形,
∴AB=BD,
又∵AD =BD,
∴△ABD是等边三角形,
∴∠ABD=60°,
∴∠ACB=30°.
故答案为:45,30.
练习册系列答案
相关题目