题目内容
【题目】如图,∠DAB=∠CAE,AD=AB,AC=AE.
(1)求证△ABE≌△ADC;
(2)设BE与CD交于点O,∠DAB=30°,求∠BOC的度数.
【答案】(1)见解析;(2)150°.
【解析】
(1)先利用角的和差证出∠DAC=∠BAE,再利用SAS证△ABE≌△ADC即可;
(2)设AB与OD交于点F,根据(1)中全等可得:∠ABE=∠D,根据三角形的内角和定理可证∠BOF=∠DAB=30°,从而求出∠BOC的度数.
解:(1)∵∠DAB=∠CAE
∴∠DAB+∠BAC=∠CAE+∠BAC
∴∠DAC=∠BAE
在△ABE和△ADC中
∴△ABE≌△ADC;
(2)设AB与OD交于点F
∵△ABE≌△ADC
∴∠ABE=∠D
∵∠BFO=∠DFA
∴∠BOF=180°-∠ABE-∠BFO=180°-∠D-∠DFA=∠DAB=30°
∴∠BOC=180°-∠BOF=150°
练习册系列答案
相关题目