题目内容
【题目】已知:如图所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点达到终点后,另外一点也随之停止运动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?
(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.
【答案】(1)1;(2)2;(3)不能.
【解析】
(1)设P、Q分别从A、B两点出发,x秒后,AP=xcm,PB=(5-x)cm,BQ=2xcm则△PBQ的面积等于×2x(5-x),令该式等于4,列出方程求出符合题意的解;
(2)利用勾股定理列出方程求解即可;
(3)看△PBQ的面积能否等于7cm2,只需令×2x(5-x)=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.
设t秒后,则:AP=tcm,BP=(5﹣t)cm;BQ=2tcm.
(1)S△PBQ=BP×BQ,即,解得:t=1或4.(t=4秒不合题意,舍去)
故:1秒后,△PBQ的面积等于4cm2.
(2)PQ=5,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,t=0(舍)或2.
故2秒后,PQ的长度为5cm.
(3)令S△PQB=7,即:BP×=7,,整理得:t2﹣5t+7=0.
由于b2﹣4ac=25﹣28=﹣3<0,则方程没有实数根.
所以,在(1)中,△PQB的面积不等于7cm2.
练习册系列答案
相关题目