题目内容
【题目】如图,A、P、B、C是⊙O上四点,∠APC=∠CPB=60°.
(1)求证:△ABC是等边三角形;
(2)连接OA,OB,当点P位于什么位置时,四边形PBOA是菱形?并说明理由;
(3)已知PA=a,PB=b,求PC的长(用含a和b的式子表示).
【答案】(1)证明见解析;(2)当点P位于的中点时,四边形PBOA是菱形,理由见解析;(3)a+b.
【解析】
(1)利用圆周角定理得到∠BAC=∠CPB=60°,则∠ABC=∠BAC=∠ACB=60°,从而可判断△ABC为等边三角形;
(2)当点P位于的中点时,四边形PBOA是菱形,连接OP,如图1,先证明∠AOP=∠BOP=60°,再证明△OAP和△OBP都为等边三角形,从而得到四边形PBOA是菱形;
(3)如图2,在PC上截取PD=PA,证明△APB≌△ADC得到PB=DC,从而得到PC=PD+DC=PA+PB=a+b.
(1)证明:∵∠BAC=∠CPB=60°,
∠ABC=∠APC=60°,.
∴∠ABC=∠BAC=∠ACB=60°,
∴△ABC为等边三角形;
(2)解:当点P位于的中点时,四边形PBOA是菱形.
理由如下:连接OP,
∵∠AOB=2∠ACB=120°,P是的中点,
∴∠AOP=∠BOP=60°
又∵OA=OP=OB,
∴△OAP和△OBP都为等边三角形,
∴OA=AP=OB=PB
∴四边形PBOA是菱形.
(3)解:如图2,在PC上截取PD=PA,
又∵∠APC=60°,
∴△APD是等边三角形,
∴PA=DA,∠DAP=60°,
∵∠PAB+∠BAD=∠BAD+∠DAC,
∴∠PAB=∠DAC,
在△APB和△ADC中
,
∴△APB≌△ADC(ASA),
∴PB=DC,
又∵PA=PD,
∴PC=PD+DC=PA+PB=a+b.
【题目】某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目 选手 | 服装 | 普通话 | 主题 | 演讲技巧 |
李明 | 85 | 70 | 80 | 85 |
张华 | 90 | 75 | 75 | 80 |
结合以上信息,回答下列问题:
(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;
(2)求李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.