题目内容
【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的长.
【答案】(1)证明见解析;(2)CE=2,AF=
【解析】
(1)首先连接BD,由AB为直径,可得∠ADB=90°,又由AF是⊙O的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;
(2)首先连接AE,设CE=x,由勾股定理可得方程:(2)2=x2+(3x)2 .然后由tan∠ABF=,求得答案.
(1)证明:如图,连接BD.
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠ABD=90°.
∵AF是⊙O的切线,
∴∠FAB=90°,
即∠DAB+∠CAF=90°.
∴∠CAF=∠ABD.
∵BA=BC,∠ADB=90°,
∴∠ABC=2∠ABD.
∴∠ABC=2∠CAF.
(2)解:如图,连接AE.
∴∠AEB=90°.
设CE=x,
∵CE:EB=1:4,
∴EB=4x,BA=BC=5x,AE=3x.
在Rt△ACE中,AC2=CE2+AE2 .
即(2)2=x2+(3x)2 .
∴x=2.
∴CE=2,
∴EB=8,BA=BC=10,AE=6.
∵tan∠ABF=.
∴.
∴AF=.
练习册系列答案
相关题目