题目内容
【题目】如图,点A′在Rt△ABC的边AB上,∠ABC=30°,AC=2,∠ACB=90°,△ACB绕顶点C按逆时针方向旋转与△A′CB′重合,A'B'与BC交于点D,连接BB′,求线段BB′的长度.
【答案】2
【解析】
先根据直角三角形的性质求出BC、AB的长,再根据图形旋转的性质得出AC=A′C,BC=B′C,再由A′B=A′C即可得出∠A′CB=30°,故可得出∠BCB′=60°,进而判断出△BCB′是等边三角形,故可得出结论.
解:∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,
∴AB=2AC=4,
∴BC= =2 ,
∵∠A=60°,
∴△AA′C是等边三角形,
∴AA′= AB=2,
∴A′C=A′B,
∴∠A′CB=∠A′BC=30°,
∵△A′B′C是△ABC旋转而成,
∴∠A′CB′=90°,BC=B′C,
∴∠B′CB=90°﹣30°=60°,
∴△BCB′是等边三角形,
∴BB′=BC=2.
练习册系列答案
相关题目