题目内容
【题目】如图,抛物线y=ax2+bx﹣2经过点A(4,0)、B(1,0)两点,点C为抛物线与y轴的交点.
(1)求此抛物线的解析式;
(2)P是x轴上方抛物线上的一个动点,过P作PM⊥x轴,垂足为M,问:是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上找一点D,过点D作x轴的垂线,交AC于点E,是否存在这样的点D,使DE最长,若存在,求出点D的坐标,以及此时DE的长,若不存在,请说明理由.
【答案】(1)y=﹣x2+x﹣2;(2)存在,P(2,1);(3)存在,点D的坐标(2,1),此时DE的长为2.
【解析】
(1)用抛物线交点式表达式确定c的值,进而求解;
(2)tan∠OAC=,以A、P、M为顶点的三角形与△OAC相似,则tan∠PAM=2或,即可求解;
(3)确定DE的函数表达式,即可求解.
(1)设抛物线的表达式为:y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣4)=a(x2﹣5x+4)=ax2+bx﹣2,
故4a=﹣2,解得:a=﹣,
故抛物线的表达式为:y=﹣x2+﹣2;
(2)存在,理由:
设点P(x,﹣x2+﹣2),则点M(x,0),
则PM=﹣x2+﹣2,AM=4﹣x,
∵tan∠OAC=,
∵以A、P、M为顶点的三角形与△OAC相似,
故tan∠PAM=或2,故=2或,
解得:x=2或4(舍去)或5(舍去),
故x=2,
经检验x=2是方程的解,
故P(2,1);
(3)设直线AC的表达式为:y=kx+t,则,解得,
故直线AC的表达式为:y=x﹣2,
设点D(x,﹣x2+x﹣2),则点E(x,x﹣2),
DE=(﹣x2+x﹣2)﹣(x﹣2)=﹣x2+2x,
∵<0,故DE有最大值,当x=2时,DE的最大值为2,
此时点D(2,1);
故点D的坐标(2,1),此时DE的长为2.
【题目】为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:
组别 | 分数段 | 频数(人) | 频率 |
1 | 50≤x<60 | 30 | 0.1 |
2 | 60≤x<70 | 45 | 0.15 |
3 | 70≤x<80 | 60 | n |
4 | 80≤x<90 | m | 0.4 |
5 | 90≤x<100 | 45 | 0.15 |
请根据以图表信息,解答下列问题:
(1)表中m= ,n= ;
(2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.