题目内容

【题目】如图,为⊙的内接三角形,为⊙的直径,在线段上取点(不与端点重合),作,分别交、圆周于,连接,已知

1)求证:为⊙的切线;

2)已知,填空:

①当__________时,四边形是菱形;

②若,当__________时,为等腰直角三角形.

【答案】(1)证明见解析;(2)①;②

【解析】

1)连接,利用已知条件和圆的基本性质证明即可得到直线AG是⊙O的切线;

2)①假设四边形为菱形,易得△AOB为等边三角形,可得∠ABC=120°,可得,即可得出答案;

②假设为等腰直角三角形,可得,可得:都是等腰三角形,可证:四边形为矩形,由,可得,可证,计算可得,即可得出答案.

证明:(1)如图,连接

为半径,

为⊙的切线;

2)答案为:.提示如下:

①若四边形为菱形,

,

为等边三角形,

,

②如图所示,若为等腰直角三角形,

都是等腰三角形,在等腰中,为斜边中线,

四边形为矩形,

,

,

故答案为:

练习册系列答案
相关题目

【题目】(模型介绍)

古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营.他总是先去营,再到河边饮马,之后,再巡查营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点关于直线的对称点,连结与直线交于点,连接,则的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线上另取任一点,连结,∵直线是点的对称轴,点上,

(1)∴___________________,∴____________.在中,∵,∴,即最小.

(归纳总结)

在解决上述问题的过程中,我们利用轴对称变换,把点在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点的交点,即三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.

(模型应用)

2)如图④,正方形的边长为4的中点,上一动点.求的最小值.

解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点关于直线对称,连结于点,则的最小值就是线段的长度,则的最小值是__________

3)如图⑤,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂的最短路程为_________

4)如图⑥,在边长为2的菱形中,,将沿射线的方向平移,得到,分别连接,则的最小值为____________

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网