题目内容
【题目】如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
(1)如图1,设抛物线顶点为M,且M的坐标是(,),对称轴交AB于点N.
①求抛物线的解析式;
②是否存在点P,使四边形MNPD为菱形?并说明理由;
(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.
【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).
【解析】
(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=a,把点B的坐标代入求得a的值即可;
②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,根据该等量关系列出方程﹣2m2+4m=,通过解方程求得m的值,易得点N、P的坐标,然后推知PN=MN是否成立即可;
(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD=4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.
解:①如图1,
∵顶点M的坐标是,
∴设抛物线解析式为y=(a≠0).
∵直线y=﹣2x+4交y轴于点B,
∴点B的坐标是(0,4).
又∵点B在该抛物线上,
∴=4,
解得a=﹣2.
故该抛物线的解析式为:y==﹣2x2+2x+4;
②不存在.理由如下:
∵抛物线y=的对称轴是直线x=,且该直线与直线AB交于点N,
∴点N的坐标是.
∴.
设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),
∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.
∵PD∥MN.
当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=.
解得 m1=(舍去),m2=.
此时P(,1).
∵PN=,
∴PN≠MN,
∴平行四边形MNPD不是菱形.
∴不存在点P,使四边形MNPD为菱形;
(2)存在,理由如下:
设点D的坐标是(n,﹣2n2+2n+4),
∵点P在线段AB上且直线PD⊥x轴,
∴P(n,﹣2n+4).
由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=OBOA=×4×2=4.
则当S△ABD取最大值时,S四边形BOAD最大.
S△ABD=(yD﹣yP)(xA﹣xB)
=yD﹣yP
=﹣2n2+2n+4﹣(﹣2n+4)
=﹣2n2+4n
=﹣2(n﹣1)2+2.
当n=1时,S△ABD取得最大值2,S四边形BOAD有最大值.
此时点D的坐标是(1,4).