题目内容
如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF.


证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABE=∠CDF;
又∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°;
∴Rt△ABE≌Rt△CDF.
∴∠BAE=∠DCF.
∴AB∥CD,AB=CD,
∴∠ABE=∠CDF;
又∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°;
∴Rt△ABE≌Rt△CDF.
∴∠BAE=∠DCF.

练习册系列答案
相关题目