题目内容

【题目】如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.

求证:
(1)BC=AD
(2)△OAB是等腰三角形.

【答案】
(1)

证明:∵AC⊥BC,BD⊥AD,

∴∠ADB=∠ACB=90°,

在Rt△ABC和Rt△BAD中,

∴Rt△ABC≌Rt△BAD(HL),

∴BC=AD,


(2)

证明:∵Rt△ABC≌Rt△BAD, ∴∠CAB=∠DBA,
∴OA=OB,
∴△OAB是等腰三角形.


【解析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.
【考点精析】掌握等腰三角形的判定是解答本题的根本,需要知道如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网