题目内容
【题目】对平面直角坐标系中的点P(x,y),定义d=|x|+|y|,我们称d为P(x,y)的幸福指数.对于函数图象上任意一点P(x,y),若它的幸福指数d≥1恒成立,则称此函数为幸福函数,如二次函数y=x2+1就是一个幸福函数,理由如下:设P(x,y)为y=x2+1上任意一点,d=|x|+|y|=|x|+|x2+1|,∵|x|≥0,|x2+1|=x2+1≥1,∴d≥1.∴y=x2+1是一个幸福函数.
(1)若点P在反比例函数y=的图象上,且它的幸福指数d=2,请直接写出所有满足条件的P点坐标;
(2)一次函数y=﹣x+1是幸福函数吗?请判断并说明理由;
(3)若二次函数y=x2﹣(2m+1)x+m2+m(m>0)是幸福函数,试求出m的取值范围.
【答案】(1)满足条件的P点坐标为(﹣1,﹣1)或(1,1);
(2)一次函数y=﹣x+1是幸福函数,理由见解析;
(3)若二次函数y=x2﹣(2m+1)x+m2+m(m>0)是幸福函数,m的取值范围为m≥2.
【解析】试题分析:(1)设点P的坐标为(m, ),根据幸福指数的定义,即可得出关于m的分式方程,解之经检验即可得出结论;
(2)设P(x,y)为y=-x+1上的一点,分x<0、0≤x≤1和x>1三种情况找出d的取值范围,由此即可得出一次函数y=-x+1是幸福函数;
(3)设P(x,y)为y=x2-(2m+1)x+m2+m上的一点,由y=x2-(2m+1)x+m2+m=(x-m)(x-m-1)且m>0,可知分x≤0、0<x<m、m≤x≤m+1、x>m+1四段寻找m的取值范围,利用配方法以及二次函数的性质结合幸福函数的定义即可求出m的取值范围,综上即可得出结论.
试题解析:
解:(1)设点P的坐标为(m, ),
∴d=|m|+||=2,
解得:m1=﹣1,m2=1,
经检验,m1=﹣1,m2=1是原分式方程的解,
∴满足条件的P点坐标为(﹣1,﹣1)或(1,1).
(2)一次函数y=﹣x+1是幸福函数,理由如下:
设P(x,y)为y=﹣x+1上的一点,d=|x|+|y|=|x|+|﹣x+1|,
当x<0时,d=|x|+|﹣x+1|=﹣x﹣x+1=1﹣2x>1;
当0≤x≤1时,d=|x|+|﹣x+1|=x﹣x+1=1;
当x>1时,d=|x|+|﹣x+1|=x+x﹣1=2x﹣1>1.
∴对于y=﹣x+1上任意一点P(x,y),它的幸福指数d≥1恒成立,
∴一次函数y=﹣x+1是幸福函数.
(3)设P(x,y)为y=x2-(2m+1)x+m2+m上的一点,d=|x|+|y|=|x|+|x2﹣(2m+1)x+m2+m|,
∵y=x2-(2m+1)x+m2+m=(x-m)(x-m-1),m>0,
∴分x≤0、0<x<m、m≤x≤m+1、x>m+1考虑.
①当x≤0时,d=|x|+|x2﹣(2m+1)x+m2+m|=﹣x+x2﹣(2m+1)x+m2+m=(x﹣m﹣1)2﹣m﹣1,
当x=0时,d取最小值,最小值为m2+m,
∴m2+m≥1,
解得:m≥;
②0<x<m时,d=|x|+|x2﹣(2m+1)x+m2+m|=x+x2﹣(2m+1)x+m2+m =(x﹣m)2+m﹣1≥1,
∵(x﹣m)2≥0,
∴m﹣1≥1,
解得:m≥2;
③当m≤x≤m+1时,d=|x|+|x2﹣(2m+1)x+m2+m|=x-x2+(2m+1)x-m2-m =﹣(x﹣m﹣1)2+m+1,
当x=m时,d取最小值,最小值为m,
∴m≥1;
④当x>m+1时,d=|x|+|x2﹣(2m+1)x+m2+m|=x+x2﹣(2m+1)x+m2+m=(x﹣m)2+m﹣1>m≥1,
∴m≥1.
综上所述:若二次函数y=x2-(2m+1)x+m2+m(m>0)是幸福函数,m的取值范围为m≥2.