题目内容
【题目】如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆9m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)
【答案】拉线CE的长约为(6+)米.
【解析】
过点A作AH⊥CD,垂足为H,根据矩形性质求出AB,AH,在Rt△ACH中,tan∠CAH=,可求出CH;在Rt△CDE中,∠CED=60°,sin∠CED=,可求出CE.
解:过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=9,
在Rt△ACH中,tan∠CAH=,
∴CH=AHtan∠CAH,
∴CH=AHtan∠CAH=9tan30°=9×(米),
∵DH=1.5,
∴CD=3+1.5,
在Rt△CDE中,
∵∠CED=60°,sin∠CED=,
∴CE(米),
答:拉线CE的长约为(6+)米
练习册系列答案
相关题目