题目内容
问题:如图(12),在菱形和菱形中,点在同一条直线上,是线段 的中点,连结.探究与的位置关系及的值.小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
小题1:若图(12)中,写出线段与的位置关系及的值,并说明理由;
小题2:将图(12)中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图13).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
小题3:若图(12)中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示).
解:(1)线段与的位置关系是 ; .
请你参考小聪同学的思路,探究并解决下列问题:
小题1:若图(12)中,写出线段与的位置关系及的值,并说明理由;
小题2:将图(12)中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图13).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
小题3:若图(12)中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示).
解:(1)线段与的位置关系是 ; .
小题1:线段与的位置关系是, ;………………………………4分
小题2:猜想:(1)中的结论没有发生变化. ………………………………………5分
简证:延长GP交AD于点H,连结CH,CG.
易证△GFP≌△HDP(AAS).
∴GP=HP,GF=HD.
又易证△HDC≌△GBC
∴CH=CG,∠DCH=∠BCG.
∵∠DCH =120°.
∵CH=CG,GP=HP.
∴ GP⊥PC,∠GCP=∠HCP=60° ,则.……………………10分
小题3: ………………………………………………………12分
(1).按照小聪的思路作完图之后,GF平行于AB平行于CD,P又是中点,∠HDP=∠GFP,∠HPD=∠GPE,P为中点,所以△HDP全等于△GFP,这样DH=GF,所以CH=CG,则有等腰△CHG,有P为HG中点,所以PC⊥PG,因为菱形ABCD∠ABC=60°度所以∠DCB="120" °CP为角平分线,∠ PCG=60°PG:PC="√3"
(2)结论不变。延长CP交AB于M,连CG,MG。因为P是DF重点,所以DC=MF,CP=MP。有MF=CD=BC。考虑△CGB与△MGF,有BC=MF,∠CBG=∠MFG=60°,BG=GF,因此两三角形全等。从而CG=MG,∠CGB=∠MGF。因为∠CGB=∠CGM+∠GMB=∠MGF=∠FGB+∠BGM,因此∠CGM=∠FGB=60°,又有CG=GM,所以△CGM是等边三角形,且P是CM中点,从而原结论在此也成立。
(3)延长CP至M,使PM=PC,连MF交BG于N。易知CD‖MF‖AB。与上小问类似,可知MF=DC=BC,FG=BG。因为MF‖AB,有∠ABG=∠MNG,而∠ABG=∠ABC+∠CBG,∠MNG=∠BGF+∠GFM。因为∠ABC=∠BEF=∠BGF,所以∠CBG=∠MFG。又有BG=FG,MF=BC,所以△CBG与△MFG全等。因此与上小问类似,有CG=MG,∠CGM=∠FGB=2a。因此∠CGP=a且PG⊥PC,因此PG:PC=cot(a).
(2)结论不变。延长CP交AB于M,连CG,MG。因为P是DF重点,所以DC=MF,CP=MP。有MF=CD=BC。考虑△CGB与△MGF,有BC=MF,∠CBG=∠MFG=60°,BG=GF,因此两三角形全等。从而CG=MG,∠CGB=∠MGF。因为∠CGB=∠CGM+∠GMB=∠MGF=∠FGB+∠BGM,因此∠CGM=∠FGB=60°,又有CG=GM,所以△CGM是等边三角形,且P是CM中点,从而原结论在此也成立。
(3)延长CP至M,使PM=PC,连MF交BG于N。易知CD‖MF‖AB。与上小问类似,可知MF=DC=BC,FG=BG。因为MF‖AB,有∠ABG=∠MNG,而∠ABG=∠ABC+∠CBG,∠MNG=∠BGF+∠GFM。因为∠ABC=∠BEF=∠BGF,所以∠CBG=∠MFG。又有BG=FG,MF=BC,所以△CBG与△MFG全等。因此与上小问类似,有CG=MG,∠CGM=∠FGB=2a。因此∠CGP=a且PG⊥PC,因此PG:PC=cot(a).
练习册系列答案
相关题目