题目内容
(12分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一
点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动
时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.
(1)当x= ▲ s时,DE⊥AB;
(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;
(3)当△BEF为等腰三角形时,求x的值.
点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动
时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.
(1)当x= ▲ s时,DE⊥AB;
(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;
(3)当△BEF为等腰三角形时,求x的值.
解:(1)············································································ 2分
(2)∵在△ABC中,∠C=90°,AC=BC=4.
∴∠A=∠B=45°,AB=4,∴∠ADE+∠AED=135°;
又∵∠DEF=45°,∴∠BEF+∠AED=135°,∴∠ADE=∠BEF;
∴△ADE∽△BEF····················································································· 4分
∴=,
(3)这里有三种情况:
①如图,若EF=BF,则∠B=∠BEF;
又∵△ADE∽△BEF,∴∠A=∠ADE=45°
∴∠AED=90°,∴AE=DE=,
∵动点E的速度为1cm/s,∴此时x=s;
②如图,若EF=BE,则∠B=∠EFB
又∵△ADE∽△BEF,∴∠A=∠AED=45°
∴∠ADE=90°,∴AE=3,
∵动点E的速度为1cm/s
∴此时x=3s;
③如图,若BF=BE,则∠FEB=∠EFB;
又∵△ADE∽△BEF,∴∠ADE=∠AED
∴AE=AD=3,
∵动点E的速度为1cm/s
∴此时x=3s;
综上所述,当△BEF为等腰三角形时,x的值为s或3s或3s.
(注:求对一个结论得2分,求对两个结论得4分,求对三个结论得5分)
(2)∵在△ABC中,∠C=90°,AC=BC=4.
∴∠A=∠B=45°,AB=4,∴∠ADE+∠AED=135°;
又∵∠DEF=45°,∴∠BEF+∠AED=135°,∴∠ADE=∠BEF;
∴△ADE∽△BEF····················································································· 4分
∴=,
(3)这里有三种情况:
①如图,若EF=BF,则∠B=∠BEF;
又∵△ADE∽△BEF,∴∠A=∠ADE=45°
∴∠AED=90°,∴AE=DE=,
∵动点E的速度为1cm/s,∴此时x=s;
②如图,若EF=BE,则∠B=∠EFB
又∵△ADE∽△BEF,∴∠A=∠AED=45°
∴∠ADE=90°,∴AE=3,
∵动点E的速度为1cm/s
∴此时x=3s;
③如图,若BF=BE,则∠FEB=∠EFB;
又∵△ADE∽△BEF,∴∠ADE=∠AED
∴AE=AD=3,
∵动点E的速度为1cm/s
∴此时x=3s;
综上所述,当△BEF为等腰三角形时,x的值为s或3s或3s.
(注:求对一个结论得2分,求对两个结论得4分,求对三个结论得5分)
略
练习册系列答案
相关题目