题目内容
【题目】
(1)写出数轴上点B表示的数 _______,点P表示的数________(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(5分)
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(5分)
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.(5分)
【答案】(1)点B表示的数是-6;点P表示的数是8-5t,(2)7秒;(3)7;(4)14.
【解析】试题分析:(1)根据点A的坐标和AB之间的距离即可求得点B的坐标和点P的坐标;
(2)根据距离的差为14列出方程即可求解;
(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.
(4)分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.
试题解析:(1)点B表示的数是-6;点P表示的数是8-5t,
(2)设点P运动x秒时,在点C处追上点Q(如图)
则AC=5x,BC=3x,
∵AC-BC=AB
∴5x-3x=14
解得:x=7,
∴点P运动7秒时,在点C处追上点Q.
(3)没有变化.分两种情况:
①当点P在点A、B两点之间运动时:
MN=MP+NP=AP+BP=(AP+BP)=AB=7
②当点P运动到点B的左侧时:
MN=MP-NP=AP-BP=(AP-BP)=AB=7
综上所述,线段MN的长度不发生变化,其值为7
(4)式子|x+6|+|x-8|有最小值,最小值为14.
练习册系列答案
相关题目