题目内容
【题目】如图,点D在等边△ABC的边BC上.
(1)把△ACD绕点A顺时针旋转,使点C与点B重合,画出旋转后的△ABD′;
(2)如果AC=4,CD=1,求(1)中点D旋转所走过的路程.
【答案】
(1)解:)如图,△ABD′即为所求;
(2)解:过点A作AE⊥BC于点E,
∵△ABC是等边三角形,
∴CE= BC= ×4=2,ED=CE﹣CD=2﹣1=1.
∴在Rt△AEC中,AE= = =2 .
同理,AD= = = ,
∴点D旋转走过的路程为: = .
【解析】(1)根据图形旋转的性质画出图形即可;(2)过点A作AE⊥BC于点E,根据等边三角形的性质求出CE的长,进而可得出ED的长,根据勾股定理求出AE及AD的长,由扇形的面积公式即可得出结论.
【考点精析】认真审题,首先需要了解等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°).
练习册系列答案
相关题目
【题目】某商场计划购进冰箱、彩电进行销售,已知冰箱的进货单价比彩电的进货单价多400元,若商场用80 000元购进冰箱的数量与用64 000元购进彩电的数量相等.该商场冰箱、彩电的售货单价如下表:
冰箱 | 彩电 | |
售价(元/台) | 2500 | 2000 |
(1)分别求出冰箱、彩电的进货单价.
(2)为了满足市场需求,商场决定用不超过90 000元的资金采购冰箱、彩电共50台。若该商场将购进的冰箱、彩电共50台全部售出,获得利润为w元,为了使商场的利润最大,该商场该如何购进冰箱、彩电,最大利润是多少?