题目内容
【题目】如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧 上一点,则∠APB的度数为( )
A.45°
B.30°
C.75°
D.60°
【答案】D
【解析】解:作半径OC⊥AB于D,连结OA、OB,如图, ∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,
∴OD=CD,
∴OD= OC= OA,
∴∠OAD=30°,
又OA=OB,
∴∠OBA=30°,
∴∠AOB=120°,
∴∠APB= ∠AOB=60°.
故选D.
作半径OC⊥AB于D,连结OA、OB,如图,根据折叠的性质得OD=CD,则OD= OA,根据含30度的直角三角形三边的关系得到∠OAD=30°,接着根据三角形内角和定理可计算出∠AOB=120°,
然后根据圆周角定理计算∠APB的度数.
练习册系列答案
相关题目