题目内容
【题目】已知,BC∥OA,∠B=∠A=108°,试解答下列问题:
(1)如图1所示,则∠O= °,并判断OB与AC平行吗?为什么?
(2)如图2,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于 °;
(3)在第(2)题的条件下,若平行移动AC,如图3.
①求∠OCB:∠OFB的值;
②当∠OEB=∠OCA时,求∠OCA的度数(直接写出答案,不必写出解答过程).
【答案】(1)72,OB∥AC,见解析;(2)40;(3)①∠OCB:∠OFB=1:2;②∠OCA=54°
【解析】
(1)首先根据平行线的性质可得∠B+∠O=180,再根据∠A=∠B可得∠A+∠O=180,进而得到OB∥AC;
(2)根据角平分线的性质可得∠EOF=∠BOF,∠FOC=∠FOA,进而得到∠EOC=(∠BOF+∠FOA)=∠BOA=40;
(3)①由BC∥OA可得∠FCO=∠COA,进而得到∠FOC=∠FCO,故∠OFB=∠FOC+∠FCO=2∠OCB,进而得到∠OCB:∠OFB=1:2;
②由(1)知:OB∥AC,BC∥OA,得到∠OCA=∠BOC,∠OEB=∠EOA,根据(1)、(2)的结果求得.
解:(1)∵BC∥OA,∠B=108
∴∠O=180-108=72,
∵BC∥OA,
∴∠B+∠O=180,
∵∠A=∠B
∴∠A+∠O=180,
∴OB∥AC
故答案为:72;
(2)∵∠A=∠B=108,由(1)得∠BOA=180﹣∠B=72,
∵∠FOC=∠AOC,并且OE平分∠BOF,
∴∠EOF=∠BOF,∠FOC=∠FOA,
∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=36
故答案为:36;
(3)①∵BC∥OA,
∴∠FCO=∠COA,
又∵∠FOC=∠AOC,
∴∠FOC=∠FCO,
∴∠OFB=∠FOC+∠FCO=2∠OCB,
∴∠OCB:∠OFB=1:2;
②由(1)知:OB∥AC,∴∠OCA=∠BOC,
由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,
∴∠OCA=∠BOC=2α+β
由(1)知:BC∥OA,
∴∠OEB=∠EOA=α+β+β=α+2β
∵∠OEB=∠OCA
∴2α+β=α+2β
∴α=β
∵∠AOB=72,
∴α=β=18
∴∠OCA=2α+β=36+18=54.