题目内容
【题目】如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为( )
A.6B.9C.12D.18
【答案】C
【解析】
根据平行线和角平分线的性质得到相等的角,然后利用等角对等边,得出BP=PM,从而用其它的线段长表示出EP+BP,再根据线段CQ和CE的关系,得出EQ和CQ的关系,再综合根据平行线得出三角形相似得出EM和BC的关系,从而解决EP+BP的值.
如图,延长BQ交射线EF于M,
∵E、F分别是AB、AC的中点,
∴EF∥BC,
∴∠M=∠CBM,
∵BQ是∠CBP的平分线,
∴∠PBM=∠CBM,
∴∠M=∠PBM,
∴BP=PM,
∴EP+BP=EP+PM=EM,
∵CQ=CE,
∴EQ=2CQ,
由EF∥BC得,△MEQ∽△BCQ,
∴
=2,
∴EM=2BC=2×6=12,
即EP+BP=12.
故选:C.
练习册系列答案
相关题目