题目内容
【题目】如图,中,,点在上,,连接,以为直径作,分别与,交于点,,点为的中点,连接,过点作的切线,交于点,则的长为____________.
【答案】
【解析】
先F是BC中点求出BF=CF=4,进而求出CD=BD=5,再由勾股定理求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.
如图,连接OF
∵点F是BC中点,
∴CF=BF=BC=4,
∵CD是⊙O的直径,
∴∠CFD=90°,
∴CD=BD=5,
∴DF==3,∠OCF=∠B,
∵OC=OF,
∴∠OCF=∠OFC
∴∠OFC=∠B,
∵点F是BC中点,点O是CD中点,
∴OF∥AB,
∴∠OFD=∠GDF,
∵FG是⊙O的切线,
∴∠OFG=90°,
∴∠OFD+∠DFG=90°,
∴∠FDG+∠GDF=90°,
∴∠FDG=90°
∴FG⊥AB,
∴S△BDF=DF×BF=BD×FG,
∴FG=,
故答案为.
练习册系列答案
相关题目