题目内容
【题目】定义一种新运算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5
(1)求(﹣2)⊕3的值;
(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;
(3)若x⊕1=2(1⊕y),求代数式2x+4y+1的值.
【答案】(1)2;(2);(3)9.
【解析】
(1)直接利用新定义即可即可得出结论;
(2)先利用新定义得出(-3)⊕x=3x-6,(x+1)⊕5=-3x-3,进而建立方程求解即可得出结论;
(3)先利用新定义得出x⊕1=x,2(1⊕y)=-2y+4进而建立方程得出x+2y=4,即可得出结论.
解:(1)∵a⊕b=2a-ab,
∴(-2)⊕3=2×(-2)-(-2)×3=2.
(2)由题意知,(-3)⊕x=2×(-3)-(-3)x=3x-6,
(x+1)⊕5=2(x+1)-5(x+1)=-3x-3,
∵(-3)⊕x=(x+1)⊕5,
∴3x-6=-3x-3,
∴x=.
(3)由题意知,x⊕1=2x-x=x,2(1⊕y)=2(2×1-y)=-2y+4,
∵x⊕1=2(1⊕y),
∴x=-2y+4,
∴x+2y=4,
∴2x+4y+1=2(x+2y)+1=9.
【题目】2018年10月17日是我国第五个“扶贫日”,某校学生会干部对学生倡导的“扶贫”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图,(图中信息不完整),已知A.B两组捐款人数的比为1:5.
被调查的捐款人数分组统计表:
组别 | 捐款额x/元 | 人数 |
A | 1≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | ______ |
D | 30≤x<40 | ______ |
E | 40≤x | ______ |
请结合以上信息解答下列问题:
(1)求a的值和参与调查的总人数;
(2)补全“被调查的捐款人数分组统计图1”并计算扇形B的圆心角度数;
(3)已知该校有学生2200人,请估计捐款数不少于30元的学生人数有多少人?