题目内容

如图,已知直线y=
3
4
x,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线y=
3
4
x上的一点,以点A、B、D为顶点作正方形.
(1)若图①仅看作符合条件的一种情况,求出所有符合条件的点D的坐标;
(2)在图①中,若点P以每秒1个单位长度的速度沿直线y=
3
4
x从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.设点P运动时间为t,试探究:在移动过程中,△PAQ的面积关于t的函数关系式,并求最大值是多少?
(1)如图,



点D的坐标可以为(7,0)或(16,0)或(28,0);
(2)①当0<t≤3时,如图,过点P作PE⊥x轴,垂足为点E.
AQ=OP=t,OE=
4
5
t,AE=4-
4
5
t.
S△APQ=
1
2
AQ•AE=
1
2
t(4-
4
5
t)=-
2
5
(t-
5
2
2+
5
2


当t=
5
2
时,S△APQ的最大值为
5
2

②当3<t≤5时,如图,
过点P作PE⊥x轴,垂足为点E,过点Q作QF⊥x轴,垂足为点F.
OP=t,PE=
3
5
t,OE=
4
5
t,AE=4-
4
5
t.
QF=3,AF=BQ=t-3,EF=AE+AF=1+
1
5
t
S△APQ=S梯形PEFQ-S△PEA-S△QFA
sAPQ=
3
10
t2-
21
10
t+6
,由于对称轴为直线x=
7
2
,故当x=5时,S△APQ的最大值为3.
综上所述,S△APQ的最大值为3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网