题目内容

已知抛物线y=px2+x+q(pq≠0)与x轴交于两点A(x1,0),B(x2,0),与y轴交于点C,问△ABC能否成为直角三角形?如果能,请给出pq应满足的条件,并加以证明;如果不能,请说明理由.
当pq=-1时,能成为直角三角形.
理由:∵抛物线y=px2+x+q(pq≠0)与x轴交于两点A(x1,0),B(x2,0),
∴AB=|x1-x2|,
∴x1+x2=-
1
p
,x1•x2=
q
p

假设△ABC能构成为直角三角形,则x1•x2<0,即
q
p
<0,
由抛物线y=px2+x+q(pq≠0)可知,C点的坐标为(0,q),
∴AC2+BC2=AB2,即x12+2q2+x22=(x1-x22,q2=-x1•x2=-
q
p

q
p
<0,
∴-
q
p
>0,
∴q2=-x1•x2=-
q
p
有意义,
∴pq=-1.
故能构成为直角三角形,应满足pq=-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网