题目内容
【题目】已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)
(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.
①求证:PG=PF;
②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.
(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
【答案】(1)①详见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG-DF=DP
【解析】
(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直角三角形,△HPG≌△DPF,根据直角三角形性质可得HD=DP;(2)过点P作PH⊥PD交射线DA于点H,得到△HPD为等腰直角三角形,证△HPG≌△DPF,得HG=DF,DH=DG-HG=DG-DF,DG-DF=DP.
(1)①∵由矩形性质得∠GPF=∠HPD=90°,∠ADC=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,
∴∠PDF=∠ADP=45°,
∴△HPD为等腰直角三角形,
∴∠DHP=∠PDF=45°,
在△HPG和△DPF中,
∵,
∴△HPG≌△DPF(ASA),
∴PG=PF;
②结论:DG+DF=DP,
由①知,△HPD为等腰直角三角形,△HPG≌△DPF,
∴HD=DP,HG=DF,
∴HD=HG+DG=DF+DG,
∴DG+DF=DP;
(2)不成立,数量关系式应为:DG-DF=DP,
如图,过点P作PH⊥PD交射线DA于点H,
∵PF⊥PG,
∴∠GPF=∠HPD=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,
∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,
∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,
∴∠GHP=∠FDP=180°-45°=135°,
在△HPG和△DPF中,
∵
∴△HPG≌△DPF,
∴HG=DF,
∴DH=DG-HG=DG-DF,
∴DG-DF=DP.