题目内容

【题目】如图,△ABC和△CEF均为等腰直角三角形,E在△ABC内,∠CAE+∠CBE=90°,连接BF.

(1)求证:△CAE∽△CBF.

(2)若BE=1,AE=2,求CE的长.

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)首先由△ABC和△CEF均为等腰直角三角形可得AC:BC=CE:CF,∠ACE=∠BCF;然后根据相似三角形判定的方法,推得△CAE∽△CBF即可;

(2)首先根据△CAE∽△CBF,判断出∠CAE=∠△CBF,再根据∠CAE+∠CBE=90°,判断出∠EBF=90°;然后在Rt△BEF中,根据勾股定理,求出EF的长度,再根据CE、EF的关系,求出CE的长是多少即可.

试题解析:(1)证明:∵△ABC和△CEF均为等腰直角三角形,∴=,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF;

(2)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,=,又∵=,AE=2=,∴BF=,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴==3,∴EF=,∵=6,∴CE=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网