题目内容
【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
【答案】D
【解析】解:∵把点P(﹣5,3)向右平移8个单位得到点P1 ,
∴点P1的坐标为:(3,3),
如图所示:将点P1绕原点逆时针旋转90°得到点P2 , 则其坐标为:(﹣3,3),
将点P1绕原点顺时针旋转90°得到点P3 , 则其坐标为:(3,﹣3),
故符合题意的点的坐标为:(3,﹣3)或(﹣3,3).
故选:D.
首先利用平移的性质得出点P1的坐标,再利用旋转的性质得出符合题意的答案.
练习册系列答案
相关题目
【题目】九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
(1)把下面的频数分布表和频数分布直方图补充完整;
月均用水量x(t) | 频数(户) | 频率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | 0.24 | |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | |
25<x≤30 | 2 | 0.04 |
(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?